Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation.

نویسندگان

  • Boris Parizot
  • Laurent Laplaze
  • Lilian Ricaud
  • Elodie Boucheron-Dubuisson
  • Vincent Bayle
  • Martin Bonke
  • Ive De Smet
  • Scott R Poethig
  • Yka Helariutta
  • Jim Haseloff
  • Dominique Chriqui
  • Tom Beeckman
  • Laurent Nussaume
چکیده

The outer tissues of dicotyledonous plant roots (i.e. epidermis, cortex, and endodermis) are clearly organized in distinct concentric layers in contrast to the diarch to polyarch vascular tissues of the central stele. Up to now, the outermost layer of the stele, the pericycle, has always been regarded, in accordance with the outer tissue layers, as one uniform concentric layer. However, considering its lateral root-forming competence, the pericycle is composed of two different cell types, with one subset of cells being associated with the xylem, showing strong competence to initiate cell division, whereas another group of cells, associated with the phloem, appears to remain quiescent. Here, we established, using detailed microscopy and specific Arabidopsis thaliana reporter lines, the existence of two distinct pericycle cell types. Analysis of two enhancer trap reporter lines further suggests that the specification between these two subsets takes place early during development, in relation with the determination of the vascular tissues. A genetic screen resulted in the isolation of mutants perturbed in pericycle differentiation. Detailed phenotypical analyses of two of these mutants, combined with observations made in known vascular mutants, revealed an intimate correlation between vascular organization, pericycle fate, and lateral root initiation potency, and illustrated the independence of pericycle differentiation and lateral root initiation from protoxylem differentiation. Taken together, our data show that the pericycle is a heterogeneous cell layer with two groups of cells set up in the root meristem by the same genetic pathway controlling the diarch organization of the vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pericycle cell proliferation and lateral root initiation in Arabidopsis.

In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root p...

متن کامل

Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize.

In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-p...

متن کامل

Auxin-mediated cell cycle activation during early lateral root initiation.

Lateral root formation can be divided into two major phases: pericycle activation and meristem establishment. In Arabidopsis, the first lateral root initiation event is spatially and temporally asynchronous and involves a limited number of cells in the xylem pericycle. To study the molecular regulation during pericycle activation, we developed a lateral root-inducible system. Successive treatme...

متن کامل

Cytokinins act directly on lateral root founder cells to inhibit root initiation.

In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral ...

متن کامل

Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.

To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 146 1  شماره 

صفحات  -

تاریخ انتشار 2008